
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 224

NWS-NMC Programming Standards

John D. Stackpole
Development Division

and
James G. Howcroft

Automation Division

NOVEMBER 1980

This is an unreviewed manuscript, primarily
intended for informal exchange of information
among NMC staff members.

NWS-NMC Programming Standards

I. Philosophy

If ever there was a subject guaranteed to raise more local hackles
stiffer and faster than this one, I know not what it is. No one wants
to be forced into a mold; most everyone sees their own programming style
as perfectly clear (to them anyway); most good programmers (i.e. those
who say they enjoy working with computers and whose codes do what they
are s'posed to do, most of the time) have remarkable memories for detail,
and so can work over an old code with ease; in short they don't want to
be bothered with a lot of fancy stuff but just want to get on with the

job. Well...

There really are some reasons for adhering to a set of standards,
any standards actually, just like in other fields of endeavor, such as
writing. In writing you use punctuation marks, sentences, paragraphs
(indented, yet), sections, (sometimes with headings), chapters, wide
margins, blank lines and pages, titles, etc. All of these are arbitrary
standards which, because they are generally accepted and understood, are
a distinct aid in communication, author to reader. (If you think they
don't make too much difference take a look at the last pages of Joyce's
"Ulysses"; if your programs look like Molly Bloom's soliloquy, heaven
help your associates who may have to read them).

Hey, I hear someone say, I am writing computer programs, not people
programs and FORTRAN doesn't care what my codes look like. Well, yeah,
but... you are not alone. Other people are going to have to read your
codes, if not tomorrow, then next month, next year, when you move on,
when the code has to be converted to a new machine, when modifications,
additions, changes, are undertaken by others. You, two years from now,
are "another person", too. Sure it takes a little extra time and trouble
to make a code "readable" (surprisingly little after you get used to it,
particularly if you write it "readable" from the start) but the longer
term payoffs for yourself and the rest of us are substantial:

Large Models'are now or are going to be joint efforts in the future;
specialists will do their thing independently of others; it will be
just that much harder to talk to one another (and put the parts
together) without some standardization;

Codes that pass thru many hands can become essentially useless
(even though they are operational) because the varieties of style,
complexity, etc. make alterations hazardous at best. Standards
will hardly cure complexity but they can make it manageable;

Future computer conversions (they will never end) will be easier
and less costly if all codes are constructed along similar lines;

New Arrivals can be trained to "good" coding habits with a set
of standards to guide them;

Page 2.

Some standards, if followed closely, establish recognizable patterns
in the physical and logical layout of codes: if the written codes
show "non-standard" patterns, there's a good chance there is a
coding or logic error in the code. This really works as a self
generated de-bugging aid.

In short, standards can aid cooperative coding, clarity, consistency,
communication, and conversion. And presumably save man-hours, and maybe
even lead to programming that produces better codes sooner.

Now that you are all convinced, what standards? At this point
nobody will agree with anyone. Thomas Jefferson understood the problem:

And whether these forms be in all cases the most
rational or not is really not of so great importance.
It is much more material that there should be a rule
to go by than what the rule is; that there may be a
uniformity of proceeding ... not subject to the caprice ...
of the members.

-Jefferson's Manual, pub. 1801
(The first parliamentary proce-
dure manual in the U. S.)

Don't knock 'em 'till you've tried 'em - they work.

II. Standards

First: Documentation.

We have constructed a documentation block template for Main programs,
Subroutines, and Functions.. It's sort of a fill-the-blank operation.
See the attached copies. You can copy it over to your codes via the
TSO QED INCLUDE command from

NWS.NMC.DOCBLOCK(MAIN)
...... (SUBR)
...... (FUNC)

If you do nothing else please use this documentation system. Parts of
it are key words so catalogues of documentation can be compiled. We are
planning to require the doc-block to be present in all NMC controlled
programs (Mains, Subroutines and Functions) intended for implementation
on the new computer. And for new ones on the 195's, too. We don't

expect you to run about retrofitting doc-blocks to all your old codes
(it would be nice, though), but as new codes are developed or maintenance
is done to old ones that show signs of a long life time, we do expect
the blocks to be put in place.

Page 3.

Second: Programming Style

Assertion: Structured Top-down Coding (Ah, listen to those hackles

crackle...) is a good thing. See references for arguments.

Structured Rules:

Use these basic forms ONLY (exception below)

Sequence

(One logical
tions - no

IF - THEN:

IF-THEN-ELSE:

DOWHILE

entrance to, one logical exit from, a block of instruc-
cutting back, or multiple departure routes)

TRUE / FALSE

I
,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0

,L J.~~~~~~~.I I
I

T ,

Test

Do something

Thee contains some condition test so the loop isn't infinite.

Page 4.

DO UNTIL

(a DO loop)

Test

The last two are obviously cousins.

If you don't know what these funny pictures are all about go read
the IBM Structured Programming Guide.

Of course these forms can be nested; indeed they usually have to be
to do what you want to do. But the nesting must be complete - each form
must be finished with no cutting from one to another, out the sides so
to speak. That will lead to trouble.

FORTRAN implementation.

At present there is- no If...THEN...ELSE instruction in FORTRAN
(FORTRAN 77 - the new one - does have "structured" instructions). Here's
how to implement the forms (along with some more hackle-cracklers):

. Start your codes in Col 10 and INDENT (there, I said it)
the "contents" of DO loops, IF THENs, etc. 2 (two) columns.
And then keep indenting for each nested form. If you do
your indenting - nesting right (and there are no logic
errors) you will end up back at Col 10. If not, look for
errors.

Samples:

DOUNTIL (DO-loop):

DO 200 J = 1,JMAX

A(J) = B(J)
DO 100 I = 1,IMAX

C(I,J) = D(I,J)
100 CONTINUE

200 CONTINUE

Page 5.

IF-THEN:

IF(A.EQ.B) GOTO 300
A =P+2
AA =Q+3 3
AAA= R + 4

300 CONTINUE

IF-THEN-ELSE:

IF(P.EQ.Q) GOTO 6 00
L =N
Y =Z
GOTO 700

600 CONTINUE
L N + 1
Y= 5.0 * Z

700 CONTINUE

"Sequence" is just a series of instructions, with no GOTO type jumping
about, all starting in the same column - which column depends on how
many IFs and DOs have preceeded.

Note that the CONTINUEs are in the same columns as their matched
DOs or IFs.

Note that structured coding is NOT "GOTO less" programming - it is
just that GOTO is used ONLY in the special forms Except (I promised
an exception) you can use GOTO in a non-structured context but only for
pathological conditions (unexpected EOF, IO errors, etc.). But you
should GOTO a clearly delimited Disaster Area of your code and print
meaningful explanations of the trouble.

Here is a more complex example of most all the forms at once taken
from real life (only the variables have been changed to protect the
programmer). The outermost loop is a DOWHILE where the "test" portion
involves reading a record and testing for an EOF, all at once, in one
Fortran READ statement. (This is one proper exception to the "number-
only-CONTINUE-statements" rule). The ERR = 9000 is a (non structured)
exit to a disaster area.

Page 6.

1100 READ(NUNIT, fmt, END = 1700, ERR = 9000) A, B, C

F = A
DO 1600 J = 1, JMAX

P(J) = Q(J)
DO 1200 I = 1, IMAX

DIV (I,J) = DUDX (I,J) + DVDY (I,J)
CON (I,J) = - DIV (I,J)

1200 CONTINUE
SUMDIV = SUMDIV + DIV (1,J)
BB(J) = A(J) * B(J)

IF (BB(J) .LE. 0.35) GOTO 1300

X(J) = Y(J) + 25
V(J) = V(J) ** 2

GOTO 1500
1300 CONTINUE

IF (C .NE. F) GOTO 1400 [if...

Z(J) = A + B + C then]

1400 CONTINUE
1500 CONTINUE
1600 CONTINUE

ABOUT = SUMDIV ** 2
GOTO 1100

1700 CONTINUE

Th

[if...
then

else]
I

:3

[DOWHILE]

(You might meditate on how this block of code would look if every line

began in the same column.)

Sundries:

Here's a collection of dos and don'ts which in our experience help
greatly in doing all the good things we want to do ...

Each DO, IF, or GOTO shall have its own unique CONTINUE -
paired one for one.

Only CONTINUE and FORMAT should have statement numbers and
only one reference per CONTINUE.

· In the specification section order
(Start in Col 10)

and group things thusly

REAL*8
1

REAL*4
.............1

C

INTEGER
C

LOGICAL

This is not an exhaustive list - the idea is to put the

larger word variables first and go down to the smallest
like LOGICAL*1.

C

.............

Page 7.

Variables and Continuations should start in Col 20 or so -
try to line up variables vertically. Separate each block
of type declarations with a blank Comment or two.

· Do NOT use "DIMENSION"
Use INTEGER*4, REAL*8 etc.

· Do not use blank COMMON - label your COMMONs.

There should be no numbers (except 1 and statement numbers)
in the body of the code, including DO loop limits. Group all

number constants at top of code in specification (DATA)
statements or a series of initial instructions. Comment
explain unusual ones like unit conversion factors. Give
units of physical constants, (or use SI throughout).
This rule includes Fortran unit numbers. Make them
(INTEGER*4) variables too, and specify them up front.
This will make subsequent adjustments to operational
frameworks (e.g. MEGASTEP) much easier.

Make Statement numbers (initially) sequential..(by 10Os).

Avoid the arithmetic IF completely - use logical IFs and
nest (and indent) as necessary.

· Invent meaningful variable names that describe themselves.

Do not use "Computed GOTO" -
Use sequence of IF()

IF()

IF() .

(This is an IF...ELSE IF...ELSE IF...ELSE form, a variant
of nested IF THENs)

Put blank Comment spacers between logical subunits of the
code, and comments explaining the tricky parts (as well as
Unit title comments).

· Do not use ENTRY in subroutines.

Try (this is a tough one) to keep any code (Main or any
Subroutine) to no more than 100-150 lines of instructions
(excluding comments). Things bigger than this are hard to
grasp - parts are out of sight, causing errors to be more
easy to make. The routine should form a logical unit.
Modularize.

Page 8.

A final (at last) word:

All this looks like a lot but it really isn't. The pay off is
substantial - if nothing else you end up with a code that looks nice,
really. It's esthetically pleasing, not foreboding, and something you
can take pride in.

A couple of last last words:

Again we do not expect you to go back and structure all your old
codes. But have at it with new ones. Sure, it will take you longer in
the beginning, but don't give up. Also if you are putting patches in
old codes do the patches by the rules. That will look funny but at
least you will be able to tell what's new. The idea though is to think
and use structure for all your coding from now on - after a while you
will look with considerable disdain on your earlier non-structured efforts
(and especially those of your associates).

Ultimate final urging:

Do try the indenting business - I know it looks weird at first
(those staircases of CONTINUEs especially) but a surprising lot of self-
debugging error detection comes out of this. What happens is that the
logical structure is shown, matched, or manifested by the physical struc-
ture of the code. When the two structures don't come out the same (i.e.
the bottom CONTINUE in Col 10) then you know there is an error somewhere.
That knowledge is a lot of power. You don't suspect it, you know it.
All you have to do is find it.

And it sure does help readability.

Page 9.

FURTHER READING

1. IBM FORTRAN Manual

No kidding - go back and re-read the manual: you will be surprised
at how much you have forgotten or not realized (first time through) how
useful some things are.

2. IBM Structured Programming Guide
(Copy available in Systems Evaluation Branch).

Good meat-and-potatoes exposition of how and why.

3. The Elements of Programming Style
Kernighan & Plauger. McGraw Hill N Y 1973 (Paperback).

Absolutely outstanding. A must for any and all programmers.

4. FORTRAN with Style: Programming Proverbs.
Ledgard & Chmura. Hayden, N. J. 1978.

More good advice (with good examples) although a little cutesie
at times.

5. Top Down Structured Programming Techniques.
McGowan & Kelly Petrocelli/Charter N. Y. 1975.

Good intro to theory (and practice).

6. Structured Programming.
Linger, Mills & Witt Addison Wesley Reading Mass 1979.

Graduate Level theory - heavy stuff.

There are lots of other books on the subject but they get repeta-
tive after a while. If you can read only one, read Kernighan & Plauger's
Elements.

C$$,t MAIN PROGRAM BO CUMENiTI- ATrN I LOCK L :, 0 C
C
C MAiN PROGRAM: NANiEXXXX UtbCHIPTIVE TIiTL (40 CHARA-CTERS)
C AUTHOR: ORG: UATE: fDD i-ON YY

b AbSTRACT: (START AHSTRAC' HERKE AND INDENT TO COLUMN 5 ON THE
FOLLONjING LINE$b~ FUR A: IVIANY LINES AS ARHE RElUIFiEO TO PROVIDE

Cj

C

C Uz)AGE:CC U ahG E:

C INPUT FILES- (NAMES & uJAGE) (PARM. iF INCLtUOEC
C FTNNF001 (STAhT IN CUL 7)
C FXN
C
C OUTPUT FILES: (NLAMES & UbSAGL)
C FTMMFOOl (START IN CUL 7)
C
C
C SUBIPROGRAiS CALLED:
C U I QUE : (Li : ALPHAc fICALLY HERE)
C
C LIFPARY: (DITTO)
C
C EXIT STATES:
C
C COND = 0 SUCCESSFUL HUN
C = N THOUBLE (SPelCIFY WHATEVER)
C= Nh5 BIG8 TROUUBLE (SPECIFY WHAT)
C
C tREMARKS: LIST CAVEATS9 ADD HELPFUL ri;IiTS OR iNF
C SPACE THAT WOULD BE JSEFUL TO ,OMEDNL INTERES'

C A 'T RIBUTES:
C LANGUAGE: (INCLUDE VENDOR EXTENSIOi:S USED)
C SOi.RCE STATEMcENTS: (i';dLJqBE OF) PG3M SIZE:

ORMATI1ON IN THIS
ED iN; THE PROGRAM.

(B YTTES)

00000010
0.0000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
0000O0200
00000210
00000220

00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
000O00350
00000360
00000370
00000380
00000390
00000400
00000410

J)

C$$ SU5BROUTIRNE DOCUMENT4A lION BLCCK '

C SUBROTrIThm: N~lMEA.AXX DEbCHIPTIVE TITLE (40Q L~r~ACTEM pLIM'IT):

AidSTRACT: (STAR-I AOSTRACl- HERE iAND3 INUE~iT TiO COLUM~N 5ONS THNE

FOL IA tI'E~s FOM AE D~CIT4ieN bTL-INESD b$ 'iE NQU±ED To PkOI0E

C

CSUFBROUTI'c. :iqt X DE'-:CHiPfivE TITLE (40 CARA¢CTER LIMIT)

C U THOGE: :LL NADTE: DD MO Yy(ARGU S)
AC IPSTRAC T : (S(ART ABSTACO HT AI E T LUMN 5 ON T)e

[FOLLOWING LINES, FOR A.'- MANY LINES AS *~iE REQUIRED TO PROVIDE
REASOt`ABLE DEbCRIPTIO;', OF ThE sOUDEkS PURPOSE°)

C
C
C
C Ub'-AGE: CALL NAM.E (A R GU M : N T s
C INPUT AR-G.UtENT".: (CONIiENTS Af'NO USAGE)

C
C
C
C
C$
C

INPUT FILES: (IF ANY)

oUTPUT ARGUPENTS:

oUTPUT FILES: (NAMES & USA3E)

RETURN CONCITIOf\S:

SUBPROGRAMS CALLED:
UNIQUE : (LIST ALPHMbETICALLY HERE)

LIBRARY: (DifTO)

ATTRIBUTES:
LANGUAGE: (INCLUDE VLr--DON EXTENSIONIS USED)
SO;,RCE TATEHIENIS: (NUMBER GF) PGM SIZE: (sYTES)

00000010
00000020
0000030
00000040
00000050
00000060
00000070
00000080
00000090

00000100
00000110
00000120
00000122
00000130
00000140
00000150
00000160
00000172
00000174
00000180
00000190
00000200
00000210
00000212
00000220
00000230
00000240
00000250
00000260
00000360
00000370
00000380
00000390
00000400
00000410

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

;$5

C$~: FUNCTION DoCUwINENTATIUN' BLOCK * ,
C

FUNCTION: NAWEXAXA DESCIiPTIVE TITLE (4u CHAH<ACTIER LtlmIT)
,AUTHOR: ORG: DATE: DOD NON YY

AOiSTRACT: (START ABSTRACI HEHE AND INDElIT TO COLUMN 5 ON THE
FOLLOWI!,G LiNEiE FOR A MviAjINY LINES AS NRE R OU1iREO TO PROVIDE
A REASONABLE DE-CRIPTION OF THE 2ODEEiS PURPOSE°)

Uo aGE: XA = AANiL (ARUMF rFS)
INPUT ARGUMENT$: (CON NIN TS A MD USAGE)

INPUT FILES: (IF ANY

OUTPUT ARGUMENS I:

OUTPUT FILES: (L'AiES & USAGE)

RETURiN CONCITIOI\S:

SUBPROGRAMS CALLED:
UNIQUE (LISZT ALPHAdETICALLY HERE)

LIBRAHY: (DIITO)
A 1 T P.- I B U T £ J :AT'TR!BUTE'.7:

LANGUAGE: (INCLUDE VJNDOR EXTENSIONS USED)
SO'-RCE ~TATAE-,TS: (NUjMBER OF) PG SIZE: (BYTES)
iil, ~ ME P~SIE

00000010
00000020

00000030
00000040
00000050
00000060
00000070
00000080OGGOOO0~O
00000090
O00000100U
00000110
00000120
00000122
00000130
00000140
00000150
00000160
00000172
00000174
00000180
00000190
oOO00200
00000210
00000212
00000220
00000230
00000230

000O0250
00000260
000003o0
00000370
00000380
00000390
00000400
OO00041O0

C
C

C
C
C
C
C
C
C

C
C
C
C
C
C
c~

C
C
C
C
C
C
C
C

C

U.S. DEPARTMENT OF COMMERCE
*so bJ National Oceanic and Atmospheric Administration

NATIONAL WEATHER SERVICE

National Meteorological Center

OA/W324/JDS

November 5, 1980

TO : All NMC Personnel With Anything to Do With
Computer Programs

FROM : OA/W3 - Frederick G. Shuman

SUBJECT: Standards for Programs

The attached Office Note #224 contains a set of NMC
programming standards which you should follow in your
future programming efforts, starting now. In particular,
the use of the "Documentation Block" (see Page 2) is
mandatory for all individual programs (MAIN, SUBROUTINE,
or FUNCTION) which are intended to be run operationally
on the new computer, for new operational codes for the
360/195, and for currently run operational 360/195 programs
when substantial revisions or maintenance is done to them.

The Implementation Committee will review new codes
against these standards, and require the programmer to
"retrofit" his code for implementation.

Attachment

